AlphaZero Documentation
Release 0.1

vapor, jzhangbs, wzhouad

Jun 10, 2019

Contents

1 Introduction 1
2 Contents 3
2.1 Game Environments i e 3
2.2 Evaluators L e e e 7
2.3 GamePlay e e e e e 8
2.4 Neural Networks o o o o e e e e e e 8
25 Playerso e 9
2.6 DataProcessing e e e 10
2.7 Search Algorithm L e e e e e e e e 13
2.8 Reinforcement Learning oL e e e e e e e e 15
Python Module Index 19
Index 21

CHAPTER 1

Introduction

AlphaZero is a replication of Mastering the game of Go without human knowledge and Mastering Chess and Shogi by
Self-Play with a General Reinforcement Learning Algorithm.

https://www.nature.com/nature/journal/v550/n7676/pdf/nature24270.pdf
https://arxiv.org/abs/1712.01815)
https://arxiv.org/abs/1712.01815)

AlphaZero Documentation, Release 0.1

2 Chapter 1. Introduction

CHAPTER 2

Contents

2.1 Game Environments

class AlphaZero.env.go.GameState (size=19, komi=7.5, enforce_superko=False, his-
tory_length=38)
State of a game of Go and some basic functions to interact with it

get_group (position)
Get the group of connected same-color stones to the given position.

Parameters

* position — a tuple of (x, y), x being the column index of the starting position of the
search,

* being the row index of the starting position of the search

) -

Returns a set of tuples consist of (x, y)s which are the same-color cluster, which contains the
input single position. len(group) is size of the cluster, can be large.

Return type set

get_groups_around (position)
returns a list of the unique groups adjacent to position ‘unique’ means that, for example in this position:

only the one white group would be returned on get_groups_around((1,1))
Parameters position - a tuple of (x, y)

Returns a list of the unique groups adjacent to position.

AlphaZero Documentation, Release 0.1

Return type list

copy ()
Gets a copy of this Game state

Returns a copy of this Game state
Return type AlphaZero.env.go.GameState
is_suicide (action)
Parameters action — a tuple of (x, y)
Returns return true if having current_player play at <action> would be suicide
Return type bool

is_positional_superko (action)
Find all actions that the current_player has done in the past, taking into account the fact that history starts
with BLACK when there are no handicaps or with WHITE when there are. :param action: a tuple of (x, y)

Returns if the move is positional superko.
Return type bool

is_1legal (action)
Determines if the given action (x,y) is a legal move :param action: a tuple of (x, y)

Returns if the move is legal.
Return type bool
is_eyeish (position, owner)
Parameters
* position —atuple of (x,y)
* owner - the color
Returns whether the position is empty and is surrounded by all stones of ‘owner’
Return type bool

is_eye (position, owner, stack=[])
returns whether the position is a true eye of ‘owner’ Requires a recursive call; empty spaces diagonal to
‘position’ are fine as long as they themselves are eyes

get_legal_moves (include_eyes=True)
Parameters include_eyes — whether to include eyes in legal moves
Returns a list of tuples.
Return type list

get_winner ()
Calculate score of board state and return player ID (1, -1, or O for tie) corresponding to winner. Uses ‘Area
scoring’.

Returns the color of the winner.
Return type int

place_handicaps (actions)
Place handicap stones of black. :param actions: a list of tuples of (x, y)

Returns None

4 Chapter 2. Contents

AlphaZero Documentation, Release 0.1

place_handicap_stone (action, color=1)
Place a handicap stone of the specified color. :param action: a tuple of (x, y) :param color: the color of the
move

Returns None

get_current_player ()
Returns the color of the player who will make the next move.
Return type int

do_move (action, color=None)
Play stone at action=(x,y). If color is not specified, current_player is used If it is a legal move, cur-
rent_player switches to the opposite color If not, an IllegalMove exception is raised

Parameters
* action —a tuple of (x,y)
* color — the color of the move
Returns if it is the end of game.
Return type bool
transform (transform_id)
Transform the current board and the history boards according to D(4). Caution: self.history (action
history) is not modified, thus this function should ONLY be used for state evaluation.
Parameters transform_id - integer in range [0, 7]

Returns None

exception AlphaZero.env.go.IllegalMove

class AlphaZero.env.mnk.GameState (history_length=38)
Game state of mnk Game.

copy ()
Gets a copy of this Game state

Returns a copy of this Game state
Return type AlphaZero.env.mnk.GameState

is_legal (action)
Determines if the given action (x,y) is a legal move :param action: a tuple of (x, y)

Returns if the move is legal.

Return type bool
get_legal_moves ()

Returns a list of legal moves.

Return type list

get_winner ()
Returns: The winner, None if the game is not ended yet

do_move (action, color=None)
Play stone at action=(x,y). If color is not specified, current_player is used If it is a legal move, cur-
rent_player switches to the opposite color If not, an IllegalMove exception is raised

2.1. Game Environments 5

AlphaZero Documentation, Release 0.1

Parameters
* action —atuple of (x, y)
* color - the color of the move
Returns if it is the end of game.
Return type bool
transform (transform_id)
Transform the current board and the history boards according to D(4). Caution: self.history (action
history) is not modified, thus this function should ONLY be used for state evaluation.
Parameters transform_id — integer in range [0, 7]

Returns None

exception AlphaZero.env.mnk.IllegalMove

class AlphaZero.env.reversi.GameState (size=8, history_length=38)
Game state of Reversi Game.

copy ()
Gets a copy of this Game state

Returns a copy of this Game state
Return type AlphaZero.env.reversi.GameState

is_1legal (action)
Determines if the given action (x,y) is a legal move :param action: a tuple of (x, y)

Returns if the move is legal.
Return type bool
get_legal_moves ()

This function is infrequently used, therefore not optimized. Checks all non-pass moves

Returns a list of legal moves
Return type list
get_winner ()
Counts the stones on the board, assumes the game is ended
Returns The winner, None if the game is not ended yet
Return type int

do_move (action, color=None)
Play stone at action=(x,y). If color is not specified, current_player is used If it is a legal move, cur-
rent_player switches to the opposite color If not, an IllegalMove exception is raised

Parameters

* action - atuple of (x,y)

* color — the color of the move
Returns if it is the end of game.

Return type bool

6 Chapter 2. Contents

AlphaZero Documentation, Release 0.1

transform (transform_id)
Transform the current board and the history boards according to D(4). Caution: self.history (action
history) is not modified, thus this function should ONLY be used for state evaluation.
Parameters transform_id — integer in range [0, 7]

Returns None

exception AlphaZero.env.reversi.IllegalMove

2.2 Evaluators

class AlphaZero.evaluator.nn_eval_parallel.NNEvaluator (cluster, game_config,

ext_config)
Provide neural network evaluation services for model evaluator and data generator. Instances should be created

by the main evaluator/generator thread. Context manager (with statement) is preferred because of the automatic
start and termination of the listening thread.

Example
with NNEvaluator(...) as eval: pass

Parameters
* cluster - Tensorflow cluster spec
* game_config - A dictionary of game environment configuration
* ext_config - A dictionary of system configuration
eval (state)
This function is called by mcts threads.
Parameters state — GameState
Returns (policy, value) pair
Return type Tuple

sl listen()
The listener for saving and loading the network parameters. This is run in new thread instead of process.

load (filename)
Send the load request.

Parameters filename - the filename of the checkpoint

save (filename)
Send the save request.

Parameters filename — the filename of the checkpoint

listen()
The listener for collecting the computation requests and performing neural network evaluation.

2.2. Evaluators 7

AlphaZero Documentation, Release 0.1

2.3 Game Play

class AlphaZero.game.gameplay.Game (nn_eval_I, nn_eval_2, game_config, ext_config)
A single game of two players.

Parameters
e nn_eval_1 — NNEvaluator instance. This class doesn’t create evaluator.
e nn_eval_2 — NNEvaluator instance.

start ()
Make the instance callable. Start playing.

Returns Game winner. Definition is in go.py.

get_history ()
Convert the format of game history for training.

Returns game states, probability maps and game results

Return type tuple of numpy arrays

2.4 Neural Networks

class AlphaZero.network.main.Network (game_config, num_gpu=1,
train_config="/home/docs/checkouts/readthedocs.org/user_builds/alphazero/che
load_pretrained=False, data_format="NHWC’,
cluster=<MagicMock name="mock.ClusterSpec()’

id="140228231301888’>, job="main’)
This module defines the network structure and its operations.

Parameters
* game_config — the rules and size of the game
* train_config — defines the size of the network and configurations in model training.
* num_gpu — the number of GPUs used for computation.
* load_pretrained — whether to load the pre-trained model

* data_format — input format, either “NCHW” or “NHWC”. “NCHW” achieves higher
performance on GPU, but it’s not compatible with CPU.

* job (cluster,) - for distributed training.

update (data)
Update the model parameters.

Parameters data — tuple (state, action, result,). state is a numpy array of shape [None, filters,
board_height, board_width]. action is a numpy array of shape [None, flat_move_output].
result is a numpy array of shape [None].

Returns Average loss of the minibatch.

response (data)
Predict the action and result given current state.

Parameters data — (state,). state is a numpy array of shape [None, filters, board_height,
board_width].

8 Chapter 2. Contents

AlphaZero Documentation, Release 0.1

Returns A tuple (R_p, R_v). R_p is the probability distribution of action, a numpy array of shape
[None, 362]. R_v is the expected value of current state, a numpy array of shape [None].

evaluate (data)
Calculate loss and result based on supervised data.

Parameters data — tuple (state, action, result,). state is a numpy array of shape [None, filters,
board_height, board_width]. action is a numpy array of shape [None, flat_move_output].
result is a numpy array of shape [None].

Returns A tuple (loss, acc, mse). loss is the average loss of the minibatch. acc is the position
prediction accuracy. mse is the mean squared error of game outcome.

get_global_step ()
Get global step.

save (filename)
Save the model.

Parameters filename — prefix to the saved file. The final name is filename + global_step

load (filename)
Load the model.

Parameters f£ilename — the name of saved file.

class AlphaZero.network.model .Model (game_config, train_config, data_format="NHWC’)
Neural network for AlphaGoZero. As described in “Mastering the game of Go without human knowledge”.

Parameters
* game_config — the rules and size of the game
* train_config - defines the size of the network and configurations in model training.

* data_format — input format, either “NCHW” or “NHWC”.

2.5 Players

class AlphaZero.player.cmd_player.Player
Represents a player controlled by a human in the command line playing interface.

think (state)
Asks the user for input and returns if it’s legal.

Parameters state — the current game state.
Returns a tuple of the input move and None.
Return type tuple

ack (move)
Does nothing.

Parameters move — the move played.
Returns None

class AlphaZero.player.mcts_player.Player (eval_fun, game_config, ext_config)
Represents a player playing according to Monto Carlo Tree Search.

think (state, dirichlet=False)
Generate a move according to a game state.

2.5. Players 9

AlphaZero Documentation, Release 0.1

Parameters

* state —a game state

* dirichlet — whether to apply dirichlet noise to the result prob distribution
Returns The generated move and probabilities of moves
Return type tuple

ack (move)
Update the MCT.

Parameters move — A new move

class AlphaZero.player.nn_player.Player (nn_eval, game_config)
Represents a player playing according to an evaluation function.

think (state)
Chooses the move with the highest probability by evaluating the current state with the evaluation function.
:param state: the current game state.

Returns a tuple of the calculated move and None.
Return type tuple

ack (move)
Does nothing.

Parameters move — the current move.

Returns None

2.6 Data Processing

exception AlphaZero.processing.go.game_converter.SizeMismatchError
exception AlphaZero.processing.go.game_converter.NoResultError
exception AlphaZero.processing.go.game_converter.SearchProbsMismatchError

class AlphaZero.processing.go.game_converter.GameConverter (features)
Convert SGF files to network input feature files.

convert_game (file_name, bd_size)
Read the given SGF file into an iterable of (input,output) pairs for neural network training

Each input is a GameState converted into one-hot neural net features Each output is an action as an (X,y)
pair (passes are skipped)

If this game’s size does not match bd_size, a SizeMismatchError is raised
Parameters
e file name — file name
* bd_size — board size
Returns neural network input, move and result

Return type tuple

10 Chapter 2. Contents

AlphaZero Documentation, Release 0.1

sgfs_to_hd£5 (sgf files, hdf5_file, bd_size=19, ignore_errors=True, verbose=False)
Convert all files in the iterable sgf_files into an hdf5 group to be stored in hdf5_file.

The resulting file has the following properties:
states : dataset with shape (n_data, n_features, board width, board height)

actions : dataset with shape (n_data, 2) (actions are stored as x,y tuples of where the move was
played)

results : dataset with shape (n_data, 1), +1 if current player wins, -1 otherwise
file_offsets : group mapping from filenames to tuples of (index, length)
For example, to find what positions in the dataset come from ‘test.sgf’:
index, length = file_offsets[‘test.sgf’]
test_states = states[index:index+length]

test_actions = actions[index:index-+length]

Parameters
* sgf_files —an iterable of relative or absolute paths to SGF files
e hdf5_ file — the name of the HDF5 where features will be saved
* bd_size - side length of board of games that are loaded
* ignore_errors —if True, issues a Warning when there is an unknown

* rather than halting. Note that sgf.ParseException and
(exception)—

* exceptions are always skipped(go.IllegalMove)—
* verbose — display setting
Returns None
selfplay_to_hd£5 (sgf_pkl_files, hdf5_file, bd_size=19, ignore_errors=True, verbose=False)
Convert all files in the iterable sgf_files into an hdf5 group to be stored in hdf5_file.
The resulting file has the following properties:
states : dataset with shape (n_data, n_features, board width, board height)

actions : dataset with shape (n_data, 2) (actions are stored as x,y tuples of where the move was
played)

results : dataset with shape (n_data, 1), +1 if current player wins, -1 otherwise
file_offsets : group mapping from filenames to tuples of (index, length)
For example, to find what positions in the dataset come from ‘test.sgf’:
index, length = file_offsets[‘test.sgf’]
test_states = states[index:index-+length]

test_actions = actions[index:index-+length]

Parameters
* sgf_pkl_files - an iterable of relative or absolute paths to SGF and PKL files

e hdf5 file — the name of the HDF5 where features will be saved

2.6.

Data Processing

11

AlphaZero Documentation, Release 0.1

* bd_size —side length of board of games that are loaded
* ignore_errors —if True, issues a Warning when there is an unknown

* rather than halting. Note that sgf.ParseException and
(exception) -

* exceptions are always skipped(go.IllegalMove)—
* verbose — display setting
Returns None
AlphaZero.processing.go.game_converter.run_game_converter (cmd_line_args=None)
Run conversions.
Parameters cmd_line_args — command-line args may be passed in as a list
Returns None

class AlphaZero.processing.state_converter.StateTensorConverter (config, fea-

ture_list=None)
a class to convert from AlphaGo GameState objects to tensors of one-hot features for NN inputs

get_board history (state)
A feature encoding WHITE and BLACK on separate planes of recent history_length states

Parameters state - the game state
Returns numpy.ndarray

state_to_tensor (state)
Convert a GameState to a Theano-compatible tensor :param state: the game state

Returns numpy.ndarray

class AlphaZero.processing.state_converter.TensorActionConverter (config)
a class to convert output tensors from NN to action tuples

tensor_to_action (tensor)
Parameters tensor —a 1D prob tensor with length flat_move_output
Returns a list of (action, prob)
Return type list

class AlphaZero.processing.state_converter.ReverseTransformer (config)

1r_reflection (action_prob)
Flips the coordinate of action probability vector like np.fliplr Modification is made in place. Note that
PASS_MOVE should be placed at the end of this vector. Condition check is disabled for efficiency.

Parameters action_prob — action probabilities
Returns None
reverse_nprot90 (action_prob, transform_id)
Reverse the coordinate transform of np.rot90 performed in go.Gamestate.transform Rotate the co-
ordinates by Pi/4 * id clockwise
Parameters

* action_prob — action probability vector

12 Chapter 2. Contents

AlphaZero Documentation, Release 0.1

e transform_id - argument passed to np.rot90

Returns None

reverse_transform (action_prob, transform_id)

Reverse the coordinates for go.GameState.transform The function make modifications in place

Parameters
* action_prob - list of (action, prob)
e transform_id — number used to perform the transform, range: [0, 7]

Returns None

2.7 Search Algorithm

class AlphaZero.search.mcts.MCTreeNode (parent, prior_prob)
Tree Node in MCTS.

expand (policy, value)
Expand a leaf node according to the network evaluation. NO visit count is updated in this function, make
sure it’s updated externally.

Parameters
e policy — a list of (action, prob) tuples returned by the network
* value - the value of this node returned by the network
Returns None

select ()
Select the best child of this node.

Returns A tuple of (action, next_node) with highest Q(s,a)+U(s,a)
Return type tuple

update (v)
Update the three values

Parameters v — value
Returns None

get_selection_value ()
Implements PUCT Algorithm’s formula for current node.

Returns None

get_mean_action_value ()
Calculates Q(s,a)

Returns mean action value
Return type real

visit ()
Increment the visit count.

Returns None

2.7. Search Algorithm 13

AlphaZero Documentation, Release 0.1

is_leaf ()
Checks if it is a leaf node (i.e. no nodes below this have been expanded).

Returns if the current node is leaf.
Return type bool

is_root ()
Checks if it is a root node.

Returns if the current node is root.
Return type bool

class AlphaZero.search.mcts.MCTSearch (evaluator, game_config, max_playout=1600)
Create a Monto Carlo search tree.

calc_move (state, dirichlet=False, prop_exp=True)
Calculates the best move

Parameters
* state — current state
* dirichlet - enable Dirichlet noise described in “Self-play” section
* prop_exp — select the final decision proportional to its exponential visit
Returns the calculated result (X, y)
Return type tuple
calc_move_with_ probs (state, dirichlet=False)
Calculates the best move, and return the search probabilities. This function should only be used for
self-play.
Parameters
¢ state - current state
e dirichlet - enable Dirichlet noise described in “Self-play” section
Returns the result (x, y) and a list of (action, probs)
Return type tuple

update_with_move (last_move)
Step forward in the tree, keeping everything we already know about the subtree, assuming that calc_move()

has been called already. Siblings of the new root will be garbage-collected. :returns: None

AlphaZero.search.mcts.randint (low, high=None, size=None, dtype="1")
Return random integers from low (inclusive) to high (exclusive).
Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).
Parameters

* low (int) — Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is one above the highest such integer).

* high(int, optional)-Ifprovided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if high=None).

14 Chapter 2. Contents

AlphaZero Documentation, Release 0.1

* size (int or tuple of ints, optional)— Outputshape. If the given shape is,
e.g., (m, n, k),thenm % n x k samples are drawn. Default is None, in which case a
single value is returned.

» dtype (dtype, optional)- Desired dtype of the result. All dtypes are determined by
their name, i.e., ‘int64’, ‘int’, etc, so byteorder is not available and a specific precision may
have different C types depending on the platform. The default value is ‘np.int’.

New in version 1.11.0.

Returns out — size-shaped array of random integers from the appropriate distribution, or a single
such random int if size not provided.

Return type int or ndarray of ints
See also:
random.random_integers () similar to randint, only for the closed interval [low, high], and 1 is the low-

est value if high is omitted. In particular, this other one is the one to use to generate uniformly distributed
discrete non-integers.

Examples

>>> np.random.randint (2, size=10)
array ([, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint (1, size=10)
array([O, 0, 0, 0, O, O, O, 0, 0, 01)

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint (5, size=(2, 4))
array ([[4, 0, 2, 11,
[3, 2, 2, 011)

2.8 Reinforcement Learning

class AlphaZero.train.parallel.evaluator.Evaluator (nn_eval_chal, nn_eval_best,
r_conn, Ss_conn, game_config,
ext_config)

This class compares the performance of the up-to-date model and the best model so far by holding games
between these two models.

Parameters
* nn_eval_chal — NNEvaluator instance storing the up-to-date model
* nn_eval_best — NNEvaluator instance storing the bast model so far
* r_conn - Pipe to receive the message from optimizer
* s_conn — Pipe to send the model updating message to the self play module
* game_config - A dictionary of game environment configuration
* ext_config - A dictionary of system configuration

eval_wrapper (color_of _new)
Wrapper for a single game.

2.8. Reinforcement Learning 15

AlphaZero Documentation, Release 0.1

Parameters color_of_new — The color of the new model (challenger)

run ()
The main evaluation process. It will launch games asynchronously and examine the winning rate.

class AlphaZero.train.parallel.selfplay.Selfplay (nn_eval, r_conn, data_queue,

game_config, ext_config)
This class generates training data from self play games.

Run only this file to start a remote self play session.

Example

$ python -m AlphaZero.train.parallel.selfplay <master addr>
Parameters
* nn_eval — NNEvaluator instance storing the best model so far
* r_conn — Pipe to receive the model updating message
* data_queue — Queue to put the data
* game_config - A dictionary of game environment configuration
* ext_config - A dictionary of system configuration

selfplay wrapper ()
Wrapper for a single self play game.

run ()
The main data generation process. It will keep launching self play games.

model_update_handler ()
The handler for model updating. It will try to load new network parameters. If it is the master session, it
will also notify the remote sessions to update.

rcv_remote_data_handler ()
The handler for receiving data from remote sessions. Only the master session uses this handler.

remote_update_handler ()
The handler for receiving the update notification from the master session. Only the remote sessions use
this handler.

class AlphaZero.train.parallel.datapool.DataPool (ext _config)

This class stores the training data and handles data sending and receiving.
Parameters ext_config — A dictionary of system configuration

serve ()
The listening process. It will first load the saved data and then run a loop to handle data getting and putting
requests.

merge_data (data)
Put the new data into the array. Since the array is pre-allocated, this function will overwrite the old data
with the new ones and record the ending index.

Parameters data — New data from self play games

put (data)
Send the putting request. This function will be called by self play games.

Parameters data — New data

16

Chapter 2. Contents

AlphaZero Documentation, Release 0.1

get (batch_size)
Send the getting request. This function will be called by the optimizer.

Parameters batch_size — The size of the minibatch

Returns Minibatch of training data

2.8. Reinforcement Learning 17

AlphaZero Documentation, Release 0.1

18 Chapter 2. Contents

Python Module Index

a

AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
AlphaZero.
.processing.go.game_converter,

AlphaZero
10

AlphaZero.
AlphaZero.

12
AlphaZero

env.go, 3

env.mnk, 5

env.reversi, 6
evaluator.dummy_eval, 7
evaluator.nn_eval_parallel,7
evaluator.nn_eval_seq, 7
game.gameplay, 8
network.main, 8
network.model, 9
player.cmd_player,9
player.mcts_player,9
player.nn_player, 10

processing.selfplay2hdf, 12
processing.state_converter,

.search.mcts, 13
AlphaZero.
AlphaZero.
AlphaZero.

train.parallel.datapool, 16
train.parallel.evaluator, 15
train.parallel.selfplay, 16

19

AlphaZero Documentation, Release 0.1

20 Python Module Index

Index

A

ack () (AlphaZero.player.cmd_player. Player method), 9
ack () (AlphaZero.playermcts_player.Player method),
10
ack () (AlphaZero.player.nn_player.Player method), 10
AlphaZero.env.go (module), 3
AlphaZero.env.mnk (module), 5
AlphaZero.env.reversi (module), 6
AlphaZero.evaluator.dummy_eval (module), 7
AlphaZero.evaluator.nn_eval_parallel
(module), 7
AlphaZero.evaluator.nn_eval_seq (module),
7
AlphaZero.game.gameplay (module), 8
AlphaZero.network.main (module), 8
AlphaZero.network.model (module), 9
AlphaZero.player.cmd_player (module), 9
AlphaZero.player.mcts_player (module), 9
AlphaZero.player.nn_player (module), 10
AlphaZero.processing.go.game_converter
(module), 10
AlphaZero.processing.selfplay2hdf (mod-
ule), 12
AlphaZero.processing.state_converter
(module), 12
AlphaZero.search.mcts (module), 13
AlphaZero.train.parallel.datapool (mod-
ule), 16
AlphaZero.train.parallel.evaluator (mod-
ule), 15
AlphaZero.train.parallel.selfplay (mod-
ule), 16

C

calc_move () (AlphaZero.search.mcts. MCTSearch
method), 14

calc_move_with_probs ()
haZero.search.mcts. MCTSearch
14

(Alp-
method),

convert_game () (Alp-
haZero.processing.go.game_converter. GameConverter
method), 10

copy () (AlphaZero.env.go.GameState method), 4

copy () (AlphaZero.env.mnk.GameState method), 5

copy () (AlphaZero.env.reversi.GameState method), 6

D

DataPool (class in AlphaZero.train.parallel.datapool),
16

do_move () (AlphaZero.env.go.GameState method), 5

do_move () (AlphaZero.env.mnk.GameState method), 5

do_move () (AlphaZero.env.reversi.GameState
method), 6

E

eval () (AlphaZero.evaluator.nn_eval_parallel. NNEvaluator
method), 7

eval_wrapper ()
haZero.train.parallel.evaluator. Evaluator

(Alp-

method), 15

evaluate () (AlphaZero.network.main.Network
method), 9

Evaluator (class in Alp-

haZero.train.parallel.evaluator), 15
expand () (AlphaZero.search.mcts.MCTreeNode
method), 13

G

Game (class in AlphaZero.game.gameplay), 8

GameConverter (class in
haZero.processing.go.game_converter), 10

GameState (class in AlphaZero.env.go), 3

GameState (class in AlphaZero.env.mnk), 5

GameState (class in AlphaZero.env.reversi), 6

get () (AlphaZero.train.parallel.datapool. DataPool
method), 16

get_board_history () (Alp-
haZero.processing.state_converter.StateTensorConverter
method), 12

Alp-

21

AlphaZero Documentation, Release 0.1

get_current_player () (Alp-
haZero.env.go.GameState method), 5

get_global_step () (Alp-
haZero.network.main.Network method),
9

get_group () (AlphaZero.env.go.GameState method),
3

get_groups_around () (Alp-

haZero.env.go.GameState method), 3
get_history () (AlphaZero.game.gameplay.Game

method), 8

get_legal_moves () (AlphaZero.env.go.GameState
method), 4

get_legal_moves () (Alp-
haZero.env.mnk.GameState method), 5

get_legal_moves () (Alp-
haZero.env.reversi.GameState method), 6

get_mean_action_value () (Alp-
haZero.search.mcts. MCTreeNode method),
13

get_selection_value () (Alp-
haZero.search.mcts. MCTreeNode method),
13

get_winner () (AlphaZero.env.go.GameState
method), 4

get_winner () (AlphaZero.env.mnk.GameState
method), 5

get_winner () (AlphaZero.env.reversi.GameState
method), 6

IllegalMove, 5-7

is_eye () (AlphaZero.env.go.GameState method), 4

is_eyeish () (AlphaZero.env.go.GameState method),
4

is_leaf () (AlphaZero.search.mcts. MCTreeNode
method), 13

is_legal () (AlphaZero.env.go.GameState method), 4

is_legal () (AlphaZero.env.mnk.GameState method),
5

is_legal()
method), 6

is_positional_superko ()
haZero.env.go.GameState method), 4

(AlphaZero.env.reversi.GameState

(Alp-

is_root () (AlphaZero.search.mcts.MCTreeNode
method), 14

is_suicide () (AlphaZero.env.go.GameState
method), 4

L

listen () (AlphaZero.evaluator.nn_eval_parallel. NNEvaluator

method), 7

load () (AlphaZero.evaluator.nn_eval_parallel. NNEvaluator

method), 7

load () (AlphaZero.network.main.Network method), 9

lr_reflection() (Alp-
haZero.processing.state_converter.ReverseTransformer
method), 12

M

MCTreeNode (class in AlphaZero.search.mcts), 13
MCTSearch (class in AlphaZero.search.mcts), 14
merge_data ()
haZero.train.parallel.datapool. DataPool
method), 16
Model (class in AlphaZero.network.model), 9
model_update_handler () (Alp-
haZero.train.parallel.selfplay.Selfplay method),
16

(Alp-

N

Network (class in AlphaZero.network.main), 8

NNEvaluator (class in Alp-
haZero.evaluator.nn_eval_parallel), 7

NoResultError, 10

place_handicap_stone () (Alp-

haZero.env.go.GameState method), 4
place_handicaps () (AlphaZero.env.go.GameState
method), 4
Player (class in AlphaZero.player.cmd_player), 9
Player (class in AlphaZero.playermcts_player), 9
Player (class in AlphaZero.player.nn_player), 10
put () (AlphaZero.train.parallel.datapool. DataPool
method), 16

R

randint () (in module AlphaZero.search.mcts), 14

rcv_remote_data_handler () (Alp-
haZero.train.parallel.selfplay.Selfplay method),
16

remote_update_handler () (Alp-
haZero.train.parallel.selfplay.Selfplay method),
16

response ()
method), 8

reverse_nprot90 () (Alp-
haZero.processing.state_converter.ReverseTransformer
method), 12

reverse_transform() (Alp-
haZero.processing.state_converter.ReverseTransformer
method), 13

ReverseTransformer

(AlphaZero.network.main.Network

(class in
haZero.processing.state_converter), 12

(AlphaZero.train.parallel.evaluator. Evaluator
method), 16

Alp-

run ()

22

Index

AlphaZero Documentation, Release 0.1

run () (AlphaZero.train.parallel.selfplay.Selfplay U
method), 16 update () (AlphaZero.network.main.Network method),
run_game_converter () (in module Alp-]
haZero.processing.go.game_converter), 12 update () (AlphaZero.search.mcts.MCTreeNode
method), 13
S update_with_move () (Alp-
save () (AlphaZero.evaluator.nn_eval_parallel. NNEvaluator haZero.search.mcts. MCTSearch method),
method), 7 14
save () (AlphaZero.network.main.Network method), 9
SearchProbsMismatchError, 10 V
select () (AlphaZero.search.mcts. MCTreeNode ~visit () (AlphaZero.search.mcts.MCTreeNode
method), 13 method), 13
Selfplay (class in AlphaZero.train.parallel.selfplay),
16
selfplay_to_hdf5() (Alp-
haZero.processing.go.game_converter. GameConverter
method), 11
selfplay_wrapper () (Alp-
haZero.train.parallel.selfplay.Selfplay method),
16
serve () (AlphaZero.train.parallel.datapool.DataPool
method), 16
sgfs_to_hdf5 () (Alp-
haZero.processing.go.game_converter. GameConverter
method), 10

SizeMismatchError, 10
sl_listen () (AlphaZero.evaluatornn_eval_parallel. NNEvaluator

method), 7

start () (AlphaZero.game.gameplay.Game method), 8

state_to_tensor () (Alp-
haZero.processing.state_converter.StateTensorConverter
method), 12

StateTensorConverter (class in Alp-

haZero.processing.state_converter), 12

T

tensor_to_action() (Alp-
haZero.processing.state_converter. TensorActionConverter
method), 12

TensorActionConverter (class in Alp-
haZero.processing.state_converter), 12

think () (AlphaZero.player.cmd_player. Player
method), 9

think () (AlphaZero.player.mcts_player. Player
method), 9

think () (AlphaZero.player.nn_player.Player method),
10

transform() (AlphaZero.env.go.GameState method),
5

transform() (AlphaZero.env.mnk. GameState
method), 6

transform() (AlphaZero.env.reversi.GameState
method), 6

Index 23

	Introduction
	Contents
	Game Environments
	Evaluators
	Game Play
	Neural Networks
	Players
	Data Processing
	Search Algorithm
	Reinforcement Learning

	Python Module Index
	Index

