

AlphaZero Documentation

Introduction

AlphaZero is a replication of Mastering the game of Go without human knowledge [https://www.nature.com/nature/journal/v550/n7676/pdf/nature24270.pdf]
and Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm [https://arxiv.org/abs/1712.01815)].

Contents

	Game Environments

	Evaluators

	Game Play

	Neural Networks

	Players

	Data Processing

	Search Algorithm

	Reinforcement Learning

Game Environments

	
class AlphaZero.env.go.GameState(size=19, komi=7.5, enforce_superko=False, history_length=8)

	State of a game of Go and some basic functions to interact with it

	
get_group(position)

	Get the group of connected same-color stones to the given position.

	Parameters

	
	position – a tuple of (x, y), x being the column index of the starting position of the search,

	being the row index of the starting position of the search (y) –

	Returns

	a set of tuples consist of (x, y)s which are the same-color cluster,
which contains the input single position. len(group) is size of the cluster, can be large.

	Return type

	set

	
get_groups_around(position)

	returns a list of the unique groups adjacent to position
‘unique’ means that, for example in this position:

.
. B W . .
. W W . .
.
.

only the one white group would be returned on get_groups_around((1,1))

	Parameters

	position – a tuple of (x, y)

	Returns

	a list of the unique groups adjacent to position.

	Return type

	list

	
copy()

	Gets a copy of this Game state

	Returns

	a copy of this Game state

	Return type

	AlphaZero.env.go.GameState

	
is_suicide(action)

	
	Parameters

	action – a tuple of (x, y)

	Returns

	return true if having current_player play at <action> would be suicide

	Return type

	bool

	
is_positional_superko(action)

	Find all actions that the current_player has done in the past, taking into
account the fact that history starts with BLACK when there are no
handicaps or with WHITE when there are.
:param action: a tuple of (x, y)

	Returns

	if the move is positional superko.

	Return type

	bool

	
is_legal(action)

	Determines if the given action (x,y) is a legal move
:param action: a tuple of (x, y)

	Returns

	if the move is legal.

	Return type

	bool

	
is_eyeish(position, owner)

	
	Parameters

	
	position – a tuple of (x, y)

	owner – the color

	Returns

	whether the position is empty and is surrounded by all stones of ‘owner’

	Return type

	bool

	
is_eye(position, owner, stack=[])

	returns whether the position is a true eye of ‘owner’
Requires a recursive call; empty spaces diagonal to ‘position’ are fine
as long as they themselves are eyes

	
get_legal_moves(include_eyes=True)

	
	Parameters

	include_eyes – whether to include eyes in legal moves

	Returns

	a list of tuples.

	Return type

	list

	
get_winner()

	Calculate score of board state and return player ID (1, -1, or 0 for tie)
corresponding to winner. Uses ‘Area scoring’.

	Returns

	the color of the winner.

	Return type

	int

	
place_handicaps(actions)

	Place handicap stones of black.
:param actions: a list of tuples of (x, y)

	Returns

	None

	
place_handicap_stone(action, color=1)

	Place a handicap stone of the specified color.
:param action: a tuple of (x, y)
:param color: the color of the move

	Returns

	None

	
get_current_player()

	
	Returns

	the color of the player who will make the next move.

	Return type

	int

	
do_move(action, color=None)

	Play stone at action=(x,y). If color is not specified, current_player is used
If it is a legal move, current_player switches to the opposite color
If not, an IllegalMove exception is raised

	Parameters

	
	action – a tuple of (x, y)

	color – the color of the move

	Returns

	if it is the end of game.

	Return type

	bool

	
transform(transform_id)

	
	Transform the current board and the history boards according to D(4).

	Caution: self.history (action history) is not modified, thus this function
should ONLY be used for state evaluation.

	Parameters

	transform_id – integer in range [0, 7]

	Returns

	None

	
exception AlphaZero.env.go.IllegalMove

	

	
class AlphaZero.env.mnk.GameState(history_length=8)

	Game state of mnk Game.

	
copy()

	Gets a copy of this Game state

	Returns

	a copy of this Game state

	Return type

	AlphaZero.env.mnk.GameState

	
is_legal(action)

	Determines if the given action (x,y) is a legal move
:param action: a tuple of (x, y)

	Returns

	if the move is legal.

	Return type

	bool

	
get_legal_moves()

	
	Returns

	a list of legal moves.

	Return type

	list

	
get_winner()

	Returns: The winner, None if the game is not ended yet

	
do_move(action, color=None)

	Play stone at action=(x,y). If color is not specified, current_player is used
If it is a legal move, current_player switches to the opposite color
If not, an IllegalMove exception is raised

	Parameters

	
	action – a tuple of (x, y)

	color – the color of the move

	Returns

	if it is the end of game.

	Return type

	bool

	
transform(transform_id)

	
	Transform the current board and the history boards according to D(4).

	Caution: self.history (action history) is not modified, thus this function
should ONLY be used for state evaluation.

	Parameters

	transform_id – integer in range [0, 7]

	Returns

	None

	
exception AlphaZero.env.mnk.IllegalMove

	

	
class AlphaZero.env.reversi.GameState(size=8, history_length=8)

	Game state of Reversi Game.

	
copy()

	Gets a copy of this Game state

	Returns

	a copy of this Game state

	Return type

	AlphaZero.env.reversi.GameState

	
is_legal(action)

	Determines if the given action (x,y) is a legal move
:param action: a tuple of (x, y)

	Returns

	if the move is legal.

	Return type

	bool

	
get_legal_moves()

	
	This function is infrequently used, therefore not optimized.

	Checks all non-pass moves

	Returns

	a list of legal moves

	Return type

	list

	
get_winner()

	Counts the stones on the board, assumes the game is ended

	Returns

	The winner, None if the game is not ended yet

	Return type

	int

	
do_move(action, color=None)

	Play stone at action=(x,y). If color is not specified, current_player is used
If it is a legal move, current_player switches to the opposite color
If not, an IllegalMove exception is raised

	Parameters

	
	action – a tuple of (x, y)

	color – the color of the move

	Returns

	if it is the end of game.

	Return type

	bool

	
transform(transform_id)

	
	Transform the current board and the history boards according to D(4).

	Caution: self.history (action history) is not modified, thus this function
should ONLY be used for state evaluation.

	Parameters

	transform_id – integer in range [0, 7]

	Returns

	None

	
exception AlphaZero.env.reversi.IllegalMove

	

Evaluators

	
class AlphaZero.evaluator.nn_eval_parallel.NNEvaluator(cluster, game_config, ext_config)

	Provide neural network evaluation services for model evaluator and data generator. Instances should be created by
the main evaluator/generator thread. Context manager (with statement) is preferred because of the automatic start
and termination of the listening thread.

Example

	with NNEvaluator(…) as eval:

	pass

	Parameters

	
	cluster – Tensorflow cluster spec

	game_config – A dictionary of game environment configuration

	ext_config – A dictionary of system configuration

	
eval(state)

	This function is called by mcts threads.

	Parameters

	state – GameState

	Returns

	(policy, value) pair

	Return type

	Tuple

	
sl_listen()

	The listener for saving and loading the network parameters. This is run in new thread instead of process.

	
load(filename)

	Send the load request.

	Parameters

	filename – the filename of the checkpoint

	
save(filename)

	Send the save request.

	Parameters

	filename – the filename of the checkpoint

	
listen()

	The listener for collecting the computation requests and performing neural network evaluation.

Game Play

	
class AlphaZero.game.gameplay.Game(nn_eval_1, nn_eval_2, game_config, ext_config)

	A single game of two players.

	Parameters

	
	nn_eval_1 – NNEvaluator instance. This class doesn’t create evaluator.

	nn_eval_2 – NNEvaluator instance.

	
start()

	Make the instance callable. Start playing.

	Returns

	Game winner. Definition is in go.py.

	
get_history()

	Convert the format of game history for training.

	Returns

	game states, probability maps and game results

	Return type

	tuple of numpy arrays

Neural Networks

	
class AlphaZero.network.main.Network(game_config, num_gpu=1, train_config='/home/docs/checkouts/readthedocs.org/user_builds/alphazero/checkouts/latest/AlphaZero/network/../config/reinforce.yaml', load_pretrained=False, data_format='NHWC', cluster=<MagicMock name='mock.ClusterSpec()' id='140080977265888'>, job='main')

	This module defines the network structure and its operations.

	Parameters

	
	game_config – the rules and size of the game

	train_config – defines the size of the network and configurations in model training.

	num_gpu – the number of GPUs used for computation.

	load_pretrained – whether to load the pre-trained model

	data_format – input format, either “NCHW” or “NHWC”. “NCHW” achieves higher performance on GPU, but it’s not compatible with CPU.

	job (cluster,) – for distributed training.

	
update(data)

	Update the model parameters.

	Parameters

	data – tuple (state, action, result,). state is a numpy array of shape [None, filters, board_height, board_width].
action is a numpy array of shape [None, flat_move_output]. result is a numpy array of shape [None].

	Returns

	Average loss of the minibatch.

	
response(data)

	Predict the action and result given current state.

	Parameters

	data – (state,). state is a numpy array of shape [None, filters, board_height, board_width].

	Returns

	A tuple (R_p, R_v). R_p is the probability distribution of action, a numpy array of shape [None, 362].
R_v is the expected value of current state, a numpy array of shape [None].

	
evaluate(data)

	Calculate loss and result based on supervised data.

	Parameters

	data – tuple (state, action, result,). state is a numpy array of shape [None, filters, board_height, board_width].
action is a numpy array of shape [None, flat_move_output]. result is a numpy array of shape [None].

	Returns

	A tuple (loss, acc, mse). loss is the average loss of the minibatch. acc is the position prediction accuracy.
mse is the mean squared error of game outcome.

	
get_global_step()

	Get global step.

	
save(filename)

	Save the model.

	Parameters

	filename – prefix to the saved file. The final name is filename + global_step

	
load(filename)

	Load the model.

	Parameters

	filename – the name of saved file.

	
class AlphaZero.network.model.Model(game_config, train_config, data_format='NHWC')

	Neural network for AlphaGoZero. As described in “Mastering the game of Go without human knowledge”.

	Parameters

	
	game_config – the rules and size of the game

	train_config – defines the size of the network and configurations in model training.

	data_format – input format, either “NCHW” or “NHWC”.

Players

	
class AlphaZero.player.cmd_player.Player

	Represents a player controlled by a human in the command line playing interface.

	
think(state)

	Asks the user for input and returns if it’s legal.

	Parameters

	state – the current game state.

	Returns

	a tuple of the input move and None.

	Return type

	tuple

	
ack(move)

	Does nothing.

	Parameters

	move – the move played.

	Returns

	None

	
class AlphaZero.player.mcts_player.Player(eval_fun, game_config, ext_config)

	Represents a player playing according to Monto Carlo Tree Search.

	
think(state, dirichlet=False)

	Generate a move according to a game state.

	Parameters

	
	state – a game state

	dirichlet – whether to apply dirichlet noise to the result prob distribution

	Returns

	The generated move and probabilities of moves

	Return type

	tuple

	
ack(move)

	Update the MCT.

	Parameters

	move – A new move

	
class AlphaZero.player.nn_player.Player(nn_eval, game_config)

	Represents a player playing according to an evaluation function.

	
think(state)

	Chooses the move with the highest probability by evaluating the current state with the evaluation function.
:param state: the current game state.

	Returns

	a tuple of the calculated move and None.

	Return type

	tuple

	
ack(move)

	Does nothing.

	Parameters

	move – the current move.

	Returns

	None

Data Processing

	
exception AlphaZero.processing.go.game_converter.SizeMismatchError

	

	
exception AlphaZero.processing.go.game_converter.NoResultError

	

	
exception AlphaZero.processing.go.game_converter.SearchProbsMismatchError

	

	
class AlphaZero.processing.go.game_converter.GameConverter(features)

	Convert SGF files to network input feature files.

	
convert_game(file_name, bd_size)

	Read the given SGF file into an iterable of (input,output) pairs
for neural network training

Each input is a GameState converted into one-hot neural net features
Each output is an action as an (x,y) pair (passes are skipped)

If this game’s size does not match bd_size, a SizeMismatchError is raised

	Parameters

	
	file_name – file name

	bd_size – board size

	Returns

	neural network input, move and result

	Return type

	tuple

	
sgfs_to_hdf5(sgf_files, hdf5_file, bd_size=19, ignore_errors=True, verbose=False)

	Convert all files in the iterable sgf_files into an hdf5 group to be stored in hdf5_file.

The resulting file has the following properties:

states : dataset with shape (n_data, n_features, board width, board height)

actions : dataset with shape (n_data, 2) (actions are stored as x,y tuples of where the move was played)

results : dataset with shape (n_data, 1), +1 if current player wins, -1 otherwise

file_offsets : group mapping from filenames to tuples of (index, length)

For example, to find what positions in the dataset come from ‘test.sgf’:

index, length = file_offsets[‘test.sgf’]

test_states = states[index:index+length]

test_actions = actions[index:index+length]

	Parameters

	
	sgf_files – an iterable of relative or absolute paths to SGF files

	hdf5_file – the name of the HDF5 where features will be saved

	bd_size – side length of board of games that are loaded

	ignore_errors – if True, issues a Warning when there is an unknown

	rather than halting. Note that sgf.ParseException and (exception) –

	exceptions are always skipped (go.IllegalMove) –

	verbose – display setting

	Returns

	None

	
selfplay_to_hdf5(sgf_pkl_files, hdf5_file, bd_size=19, ignore_errors=True, verbose=False)

	Convert all files in the iterable sgf_files into an hdf5 group to be stored in hdf5_file.

The resulting file has the following properties:

states : dataset with shape (n_data, n_features, board width, board height)

actions : dataset with shape (n_data, 2) (actions are stored as x,y tuples of where the move was played)

results : dataset with shape (n_data, 1), +1 if current player wins, -1 otherwise

file_offsets : group mapping from filenames to tuples of (index, length)

For example, to find what positions in the dataset come from ‘test.sgf’:

index, length = file_offsets[‘test.sgf’]

test_states = states[index:index+length]

test_actions = actions[index:index+length]

	Parameters

	
	sgf_pkl_files – an iterable of relative or absolute paths to SGF and PKL files

	hdf5_file – the name of the HDF5 where features will be saved

	bd_size – side length of board of games that are loaded

	ignore_errors – if True, issues a Warning when there is an unknown

	rather than halting. Note that sgf.ParseException and (exception) –

	exceptions are always skipped (go.IllegalMove) –

	verbose – display setting

	Returns

	None

	
AlphaZero.processing.go.game_converter.run_game_converter(cmd_line_args=None)

	Run conversions.

	Parameters

	cmd_line_args – command-line args may be passed in as a list

	Returns

	None

	
class AlphaZero.processing.state_converter.StateTensorConverter(config, feature_list=None)

	a class to convert from AlphaGo GameState objects to tensors of one-hot
features for NN inputs

	
get_board_history(state)

	A feature encoding WHITE and BLACK on separate planes of recent history_length states

	Parameters

	state – the game state

	Returns

	numpy.ndarray

	
state_to_tensor(state)

	Convert a GameState to a Theano-compatible tensor
:param state: the game state

	Returns

	numpy.ndarray

	
class AlphaZero.processing.state_converter.TensorActionConverter(config)

	a class to convert output tensors from NN to action tuples

	
tensor_to_action(tensor)

	
	Parameters

	tensor – a 1D prob tensor with length flat_move_output

	Returns

	a list of (action, prob)

	Return type

	list

	
class AlphaZero.processing.state_converter.ReverseTransformer(config)

	
	
lr_reflection(action_prob)

	Flips the coordinate of action probability vector like np.fliplr
Modification is made in place.
Note that PASS_MOVE should be placed at the end of this vector.
Condition check is disabled for efficiency.

	Parameters

	action_prob – action probabilities

	Returns

	None

	
reverse_nprot90(action_prob, transform_id)

	
	Reverse the coordinate transform of np.rot90 performed in go.Gamestate.transform

	Rotate the coordinates by Pi/4 * id clockwise

	Parameters

	
	action_prob – action probability vector

	transform_id – argument passed to np.rot90

	Returns

	None

	
reverse_transform(action_prob, transform_id)

	
	Reverse the coordinates for go.GameState.transform

	The function make modifications in place

	Parameters

	
	action_prob – list of (action, prob)

	transform_id – number used to perform the transform, range: [0, 7]

	Returns

	None

Search Algorithm

	
class AlphaZero.search.mcts.MCTreeNode(parent, prior_prob)

	Tree Node in MCTS.

	
expand(policy, value)

	Expand a leaf node according to the network evaluation.
NO visit count is updated in this function, make sure it’s updated externally.

	Parameters

	
	policy – a list of (action, prob) tuples returned by the network

	value – the value of this node returned by the network

	Returns

	None

	
select()

	Select the best child of this node.

	Returns

	A tuple of (action, next_node) with highest Q(s,a)+U(s,a)

	Return type

	tuple

	
update(v)

	Update the three values

	Parameters

	v – value

	Returns

	None

	
get_selection_value()

	Implements PUCT Algorithm’s formula for current node.

	Returns

	None

	
get_mean_action_value()

	Calculates Q(s,a)

	Returns

	mean action value

	Return type

	real

	
visit()

	Increment the visit count.

	Returns

	None

	
is_leaf()

	Checks if it is a leaf node (i.e. no nodes below this have been expanded).

	Returns

	if the current node is leaf.

	Return type

	bool

	
is_root()

	Checks if it is a root node.

	Returns

	if the current node is root.

	Return type

	bool

	
class AlphaZero.search.mcts.MCTSearch(evaluator, game_config, max_playout=1600)

	Create a Monto Carlo search tree.

	
calc_move(state, dirichlet=False, prop_exp=True)

	Calculates the best move

	Parameters

	
	state – current state

	dirichlet – enable Dirichlet noise described in “Self-play” section

	prop_exp – select the final decision proportional to its exponential visit

	Returns

	the calculated result (x, y)

	Return type

	tuple

	
calc_move_with_probs(state, dirichlet=False)

	
	Calculates the best move, and return the search probabilities.

	This function should only be used for self-play.

	Parameters

	
	state – current state

	dirichlet – enable Dirichlet noise described in “Self-play” section

	Returns

	the result (x, y) and a list of (action, probs)

	Return type

	tuple

	
update_with_move(last_move)

	Step forward in the tree, keeping everything we already know about the subtree, assuming
that calc_move() has been called already. Siblings of the new root will be garbage-collected.
:returns: None

	
AlphaZero.search.mcts.randint(low, high=None, size=None, dtype='l')

	Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of
the specified dtype in the “half-open” interval [low, high). If
high is None (the default), then results are from [0, low).

	Parameters

	
	low (int) – Lowest (signed) integer to be drawn from the distribution (unless
high=None, in which case this parameter is one above the
highest such integer).

	high (int, optional) – If provided, one above the largest (signed) integer to be drawn
from the distribution (see above for behavior if high=None).

	size (int or tuple of ints, optional) – Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a
single value is returned.

	dtype (dtype, optional) – Desired dtype of the result. All dtypes are determined by their
name, i.e., ‘int64’, ‘int’, etc, so byteorder is not available
and a specific precision may have different C types depending
on the platform. The default value is ‘np.int’.

New in version 1.11.0.

	Returns

	out – size-shaped array of random integers from the appropriate
distribution, or a single such random int if size not provided.

	Return type

	int or ndarray of ints

See also

	random.random_integers()

	similar to randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted. In particular, this other one is the one to use to generate uniformly distributed discrete non-integers.

Examples

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
 [3, 2, 2, 0]])

Reinforcement Learning

	
class AlphaZero.train.parallel.evaluator.Evaluator(nn_eval_chal, nn_eval_best, r_conn, s_conn, game_config, ext_config)

	This class compares the performance of the up-to-date model and the best model so far by holding games
between these two models.

	Parameters

	
	nn_eval_chal – NNEvaluator instance storing the up-to-date model

	nn_eval_best – NNEvaluator instance storing the bast model so far

	r_conn – Pipe to receive the message from optimizer

	s_conn – Pipe to send the model updating message to the self play module

	game_config – A dictionary of game environment configuration

	ext_config – A dictionary of system configuration

	
eval_wrapper(color_of_new)

	Wrapper for a single game.

	Parameters

	color_of_new – The color of the new model (challenger)

	
run()

	The main evaluation process. It will launch games asynchronously and examine the winning rate.

	
class AlphaZero.train.parallel.selfplay.Selfplay(nn_eval, r_conn, data_queue, game_config, ext_config)

	This class generates training data from self play games.

Run only this file to start a remote self play session.

Example

$ python -m AlphaZero.train.parallel.selfplay <master addr>

	Parameters

	
	nn_eval – NNEvaluator instance storing the best model so far

	r_conn – Pipe to receive the model updating message

	data_queue – Queue to put the data

	game_config – A dictionary of game environment configuration

	ext_config – A dictionary of system configuration

	
selfplay_wrapper()

	Wrapper for a single self play game.

	
run()

	The main data generation process. It will keep launching self play games.

	
model_update_handler()

	The handler for model updating. It will try to load new network parameters. If
it is the master session, it will also notify the remote sessions to update.

	
rcv_remote_data_handler()

	The handler for receiving data from remote sessions. Only the master session uses this handler.

	
remote_update_handler()

	The handler for receiving the update notification from the master session. Only the remote sessions
use this handler.

	
class AlphaZero.train.parallel.datapool.DataPool(ext_config)

	This class stores the training data and handles data sending and receiving.

	Parameters

	ext_config – A dictionary of system configuration

	
serve()

	The listening process. It will first load the saved data and then run a loop to handle
data getting and putting requests.

	
merge_data(data)

	Put the new data into the array. Since the array is pre-allocated, this function will overwrite the
old data with the new ones and record the ending index.

	Parameters

	data – New data from self play games

	
put(data)

	Send the putting request. This function will be called by self play games.

	Parameters

	data – New data

	
get(batch_size)

	Send the getting request. This function will be called by the optimizer.

	Parameters

	batch_size – The size of the minibatch

	Returns

	Minibatch of training data

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 AlphaZero	

 	
 	
 AlphaZero.env.go	

 	
 	
 AlphaZero.env.mnk	

 	
 	
 AlphaZero.env.reversi	

 	
 	
 AlphaZero.evaluator.dummy_eval	

 	
 	
 AlphaZero.evaluator.nn_eval_parallel	

 	
 	
 AlphaZero.evaluator.nn_eval_seq	

 	
 	
 AlphaZero.game.gameplay	

 	
 	
 AlphaZero.network.main	

 	
 	
 AlphaZero.network.model	

 	
 	
 AlphaZero.player.cmd_player	

 	
 	
 AlphaZero.player.mcts_player	

 	
 	
 AlphaZero.player.nn_player	

 	
 	
 AlphaZero.processing.go.game_converter	

 	
 	
 AlphaZero.processing.selfplay2hdf	

 	
 	
 AlphaZero.processing.state_converter	

 	
 	
 AlphaZero.search.mcts	

 	
 	
 AlphaZero.train.parallel.datapool	

 	
 	
 AlphaZero.train.parallel.evaluator	

 	
 	
 AlphaZero.train.parallel.selfplay	

Index

 A
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	ack() (AlphaZero.player.cmd_player.Player method)

 	(AlphaZero.player.mcts_player.Player method)

 	(AlphaZero.player.nn_player.Player method)

 	AlphaZero.env.go (module)

 	AlphaZero.env.mnk (module)

 	AlphaZero.env.reversi (module)

 	AlphaZero.evaluator.dummy_eval (module)

 	AlphaZero.evaluator.nn_eval_parallel (module)

 	AlphaZero.evaluator.nn_eval_seq (module)

 	AlphaZero.game.gameplay (module)

 	AlphaZero.network.main (module)

 	
 	AlphaZero.network.model (module)

 	AlphaZero.player.cmd_player (module)

 	AlphaZero.player.mcts_player (module)

 	AlphaZero.player.nn_player (module)

 	AlphaZero.processing.go.game_converter (module)

 	AlphaZero.processing.selfplay2hdf (module)

 	AlphaZero.processing.state_converter (module)

 	AlphaZero.search.mcts (module)

 	AlphaZero.train.parallel.datapool (module)

 	AlphaZero.train.parallel.evaluator (module)

 	AlphaZero.train.parallel.selfplay (module)

C

 	
 	calc_move() (AlphaZero.search.mcts.MCTSearch method)

 	calc_move_with_probs() (AlphaZero.search.mcts.MCTSearch method)

 	convert_game() (AlphaZero.processing.go.game_converter.GameConverter method)

 	
 	copy() (AlphaZero.env.go.GameState method)

 	(AlphaZero.env.mnk.GameState method)

 	(AlphaZero.env.reversi.GameState method)

D

 	
 	DataPool (class in AlphaZero.train.parallel.datapool)

 	do_move() (AlphaZero.env.go.GameState method)

 	(AlphaZero.env.mnk.GameState method)

 	(AlphaZero.env.reversi.GameState method)

E

 	
 	eval() (AlphaZero.evaluator.nn_eval_parallel.NNEvaluator method)

 	eval_wrapper() (AlphaZero.train.parallel.evaluator.Evaluator method)

 	
 	evaluate() (AlphaZero.network.main.Network method)

 	Evaluator (class in AlphaZero.train.parallel.evaluator)

 	expand() (AlphaZero.search.mcts.MCTreeNode method)

G

 	
 	Game (class in AlphaZero.game.gameplay)

 	GameConverter (class in AlphaZero.processing.go.game_converter)

 	GameState (class in AlphaZero.env.go)

 	(class in AlphaZero.env.mnk)

 	(class in AlphaZero.env.reversi)

 	get() (AlphaZero.train.parallel.datapool.DataPool method)

 	get_board_history() (AlphaZero.processing.state_converter.StateTensorConverter method)

 	get_current_player() (AlphaZero.env.go.GameState method)

 	get_global_step() (AlphaZero.network.main.Network method)

 	get_group() (AlphaZero.env.go.GameState method)

 	
 	get_groups_around() (AlphaZero.env.go.GameState method)

 	get_history() (AlphaZero.game.gameplay.Game method)

 	get_legal_moves() (AlphaZero.env.go.GameState method)

 	(AlphaZero.env.mnk.GameState method)

 	(AlphaZero.env.reversi.GameState method)

 	get_mean_action_value() (AlphaZero.search.mcts.MCTreeNode method)

 	get_selection_value() (AlphaZero.search.mcts.MCTreeNode method)

 	get_winner() (AlphaZero.env.go.GameState method)

 	(AlphaZero.env.mnk.GameState method)

 	(AlphaZero.env.reversi.GameState method)

I

 	
 	IllegalMove, [1], [2]

 	is_eye() (AlphaZero.env.go.GameState method)

 	is_eyeish() (AlphaZero.env.go.GameState method)

 	is_leaf() (AlphaZero.search.mcts.MCTreeNode method)

 	is_legal() (AlphaZero.env.go.GameState method)

 	(AlphaZero.env.mnk.GameState method)

 	(AlphaZero.env.reversi.GameState method)

 	
 	is_positional_superko() (AlphaZero.env.go.GameState method)

 	is_root() (AlphaZero.search.mcts.MCTreeNode method)

 	is_suicide() (AlphaZero.env.go.GameState method)

L

 	
 	listen() (AlphaZero.evaluator.nn_eval_parallel.NNEvaluator method)

 	load() (AlphaZero.evaluator.nn_eval_parallel.NNEvaluator method)

 	(AlphaZero.network.main.Network method)

 	
 	lr_reflection() (AlphaZero.processing.state_converter.ReverseTransformer method)

M

 	
 	MCTreeNode (class in AlphaZero.search.mcts)

 	MCTSearch (class in AlphaZero.search.mcts)

 	
 	merge_data() (AlphaZero.train.parallel.datapool.DataPool method)

 	Model (class in AlphaZero.network.model)

 	model_update_handler() (AlphaZero.train.parallel.selfplay.Selfplay method)

N

 	
 	Network (class in AlphaZero.network.main)

 	
 	NNEvaluator (class in AlphaZero.evaluator.nn_eval_parallel)

 	NoResultError

P

 	
 	place_handicap_stone() (AlphaZero.env.go.GameState method)

 	place_handicaps() (AlphaZero.env.go.GameState method)

 	Player (class in AlphaZero.player.cmd_player)

 	(class in AlphaZero.player.mcts_player)

 	(class in AlphaZero.player.nn_player)

 	
 	put() (AlphaZero.train.parallel.datapool.DataPool method)

R

 	
 	randint() (in module AlphaZero.search.mcts)

 	rcv_remote_data_handler() (AlphaZero.train.parallel.selfplay.Selfplay method)

 	remote_update_handler() (AlphaZero.train.parallel.selfplay.Selfplay method)

 	response() (AlphaZero.network.main.Network method)

 	reverse_nprot90() (AlphaZero.processing.state_converter.ReverseTransformer method)

 	
 	reverse_transform() (AlphaZero.processing.state_converter.ReverseTransformer method)

 	ReverseTransformer (class in AlphaZero.processing.state_converter)

 	run() (AlphaZero.train.parallel.evaluator.Evaluator method)

 	(AlphaZero.train.parallel.selfplay.Selfplay method)

 	run_game_converter() (in module AlphaZero.processing.go.game_converter)

S

 	
 	save() (AlphaZero.evaluator.nn_eval_parallel.NNEvaluator method)

 	(AlphaZero.network.main.Network method)

 	SearchProbsMismatchError

 	select() (AlphaZero.search.mcts.MCTreeNode method)

 	Selfplay (class in AlphaZero.train.parallel.selfplay)

 	selfplay_to_hdf5() (AlphaZero.processing.go.game_converter.GameConverter method)

 	selfplay_wrapper() (AlphaZero.train.parallel.selfplay.Selfplay method)

 	
 	serve() (AlphaZero.train.parallel.datapool.DataPool method)

 	sgfs_to_hdf5() (AlphaZero.processing.go.game_converter.GameConverter method)

 	SizeMismatchError

 	sl_listen() (AlphaZero.evaluator.nn_eval_parallel.NNEvaluator method)

 	start() (AlphaZero.game.gameplay.Game method)

 	state_to_tensor() (AlphaZero.processing.state_converter.StateTensorConverter method)

 	StateTensorConverter (class in AlphaZero.processing.state_converter)

T

 	
 	tensor_to_action() (AlphaZero.processing.state_converter.TensorActionConverter method)

 	TensorActionConverter (class in AlphaZero.processing.state_converter)

 	think() (AlphaZero.player.cmd_player.Player method)

 	(AlphaZero.player.mcts_player.Player method)

 	(AlphaZero.player.nn_player.Player method)

 	
 	transform() (AlphaZero.env.go.GameState method)

 	(AlphaZero.env.mnk.GameState method)

 	(AlphaZero.env.reversi.GameState method)

U

 	
 	update() (AlphaZero.network.main.Network method)

 	(AlphaZero.search.mcts.MCTreeNode method)

 	
 	update_with_move() (AlphaZero.search.mcts.MCTSearch method)

V

 	
 	visit() (AlphaZero.search.mcts.MCTreeNode method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 AlphaZero Documentation

 		
 Game Environments

 		
 Evaluators

 		
 Game Play

 		
 Neural Networks

 		
 Players

 		
 Data Processing

 		
 Search Algorithm

 		
 Reinforcement Learning

_static/up-pressed.png

_static/up.png

_static/plus.png

